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Abstract
We present a study of Fano-type resonances in high quality boron-doped silicon
as a function of boron content. The resonance (antiresonance) in the infrared
absorption spectra occurs close to the �k ≈ 0 optical phonon at 519 cm−1. The
interaction between the otherwise infrared-forbidden optical phonon and the
continuum states of the acceptor was analysed based on a modified Fano model
that involves the interaction of a discrete state with two continua.

1. Introduction

Fano interaction [1, 2] is a very frequent phenomenon in physics and appears in various systems
from rare gases to semiconductors and superconductors. Generally, the Fano effect occurs
when there is an interaction of a discrete state with a degenerate continuum of states. Due
to quantum interference between transition probability amplitudes of discrete and continuum
states, asymmetric line shapes appear. Its analysis allows us to get information on,and the basic
interaction mechanism between, electronic and vibronic states in the solid. In p-type silicon
Fano resonances have been observed in many experiments concerning infrared-absorption
[3–8], photoconductivity [9–11] and Raman spectroscopy [12–15]. There, a resonant
interaction takes place between the discrete state of the optical phonon and the hole continuum.
The continuum could be identified as the hole continuum of the acceptor-to-band excitations,
inter-valence transitions or free carrier absorption depending on experimental conditions.
The purpose of this work is to investigate experimentally the role of the boron doping in
silicon, to analyse the Fano profile on the basis of a modified Fano model, and to identify
the dominating interaction mechanisms. In the experimental part infrared transmission and
reflection measurements were performed on thin membranes and bulk crystals, respectively.
In particular, the dependence on acceptor concentration was studied for the boron range
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1018–1019 cm−3 for the first time. The details of the Fano resonance observed around 519 cm−1

seems to be in quite good agreement with a modified Fano model with two continua.

2. Experimental details

The samples used were thin silicon membranes and bulk silicon crystals. Most of the data
were taken on thin, heavily boron-doped membranes with a thickness of 2 µm. The overall
size of the membrane samples was 40 × 40 mm2 with a membrane size of 25 × 25 mm2. All
samples had well defined and homogeneous concentrations of boron in the range 5 × 1018–
2 × 1019 cm−3 [16]. We have not seen any trace of impurities, proving the high quality of
the samples used. In further study [17] the emissivity of such membranes was determined
with respect to their use as stencil masks for ion-projection lithography [18, 19]. The bulk
crystals were grown by the float-zone technique and doped either with n- or p-type (Sb and
B, respectively) to investigate also the dependence on the doping type. Infrared transmission
(membranes) and reflection (bulk crystals) were measured at room temperature using a Bruker
IFS 113v Fourier-transform spectrometer.

3. Results and discussion

As an example of our measurements we present in figure 1 the infrared spectra of the Si(B)
membrane specimen with a doping concentration of 1.3 × 1019 cm−3. The feature we were
interested in is framed in figure 1(a) and then enlarged in figure 1(b). This tiny, hardly visible,
structure with its peak transmittance over background of only 1% has,compared to its size, quite
interesting physics behind it. A glance at the normalized absorbance depicted in figure 1(d)
reveals a typical Fano profile. This is the characteristic feature of the interaction and mixing
of a discrete state with a continuum [1]. Similar resonances were observed in the absorbance
spectra of differently p-doped Si to those in Ga and Al-doped Si [6, 7]. The effect does not
exist in n-doped Si [8] as is also clearly visible from our reflectance measurements on bulk
crystal (figure 2). This figure shows the spectra of Sb-doped Si (n-type) compared with spectra
of B-doped samples. The dopant concentrations were chosen to be similar to those in the thin
Si membranes, in the range 1018–1019 cm−3. In addition, it is shown that the Fano dip due
to an optical phonon disappears in the spectrum when holes are missing in the acceptor sites
either by an increase of the sample temperature or by doping compensation [8]. This result
identifies the acceptor-to-band transitions as significant for the process. The reason for the
interaction with only the hole continuum concerns the shallow acceptor levels in Si, which are
separated by energies comparable to phonons. Moreover, the coincidence of the antiresonance
peak with the zone-centre optical phonon does not seems to be accidental as an additional peak
at 764 cm−1 with a Fano profile at the energy corresponding to the difference appears between
2 P3/2 and 1 S3/2 plus the 519 cm−1 optical phonon [6]. In addition to the acceptor-to-band
transitions, inter-valence transitions have also been suggested [7, 20] as possible partners in
the interaction with the optical phonon.

According to [6] this effect in p-doped silicon is associated with the resonant interaction
of two states:

(a) a discrete state |ϕ〉, represents the hole in its acceptor ground state G and one locally
excited optical phonon, and

(b) the state |ψE ′ 〉 with no phonons created and the hole is excited into the p3/2 valence band.

Even a small electron–phonon interaction VE in non-polar systems such as Si will produce
a mixing of these states and a resonant feature in the spectrum provided that degeneracy exists.
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Figure 1. Infrared transmission spectrum of the sample with p = 1.3 × 1019 cm−3 and the
Fano antiresonance peak in the absorbance (− log10 T ) at 519 cm−1. (d) denotes a normalized
absorbance from (c).

In other words there is a mixed state:

|�E 〉 = a|ϕ〉 +
∫

dE ′ bE ′ |ψE ′ 〉 (1)

where

|ϕ〉 = |G, 1ph〉 and |ψE ′ 〉 = |p3/2, 0ph〉. (2)

The presence of acceptor impurities disrupt the symmetry of the crystal and allows the excitation
of the otherwise infrared-forbidden optical phonon �′

25 in silicon. As the acceptor states have
some extension in real space, the portion of the q-space necessary for the construction of the
impurity wavefunction has a small but non-zero volume. Therefore, the �q �= 0 phonons are
also allowed to participate in the process. Here we model the narrow phonon band around
the �q = 0 phonon with the single phonon state |ϕ〉 broadened by a quasi-continuous phonon
band VC as is depicted in figure 3. A similar model has been used [11] in the analysis of the
photo-excitation spectra of chalcogen-doped silicon. Effectively, this means that there is an
interaction of a discrete system with two continua. Fano’s original analysis gives the ratio of
the transition probability |〈�E |T |i〉|2, from the initial state to the perturbed continuum |�E〉
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Figure 2. Reflectance spectra of p- and n-doped bulk Si. Fano peaks (arrows) are present only in
the p-type Si.

(E is an eigenvalue of the full Hamiltonian H ), to the probability |〈ψE |T |i〉|2 of transition to
the unperturbed continuum by a single family of curves:

F(ε, q) = |〈�E |T |i〉|2
|〈ψE |T |i〉|2 = (q + ε)2

1 + ε2
(3)

where the energy ε and the parameter q are defined as:

q = 〈�|T |i〉
πV ∗

E 〈ψE |T |i〉 (4)

ε = − cot � = E − Eϕ − 	(E)

�/2
, � = 2π |VE |2 with 〈ψE |H |ϕ〉 = VE (5)

|�〉 is the modified discrete state and 	(E) the frequency shift due to the electron–phonon
interaction, respectively:

|�〉 = |ϕ〉 + P
∫

dE ′ VE ′ |ψE ′ 〉
E − E ′ , 	(E) = P

∫
dE ′ |VE ′ |2

E − E ′ (6)

and T is the dipole transition operator.
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Figure 3. Scheme of interaction of holes with optical phonons. Here 1 S3/2, 2 P3/2, VB and VC
denote the acceptor levels, the p3/2 valence band with heavy holes (hh) and light holes (lh) and the
virtual phonon continuum, respectively. The inset represents the states |ϕ〉 and |ψE ′ 〉 defined in
equation (2), whereas VE and WE are the matrix elements of electron–phonon and phonon–phonon
interaction.

Figure 4. Fit of the normalized absorbance spectrum in figure 1(d) using the modified Fano model
for the interaction of a discrete state with two continua. The full line denotes the fit.

F(ε, q) is an asymmetric function of ε and equals zero at ε = −q . Looking at figure 1(d)
we see that the normalized absorbance never drops to zero as is expected from (3). Therefore,
we try to fit our experimental data using the following modified Fano function:

F̄(ε, q) = a + bF(ε, q). (7)

This function has already been used in many experiments from UV-absorption spectra of the
rare gases [2] to Raman spectra of BaTiO3 [21]. We have taken parameters a and b to be
independent during the fit and it turned out that their sum was exactly 1. The result of the
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fit is shown in figure 4. Checking the literature on Fano lines, we found few similar cases
that concern the photoexcitation spectra of chalcogen-doped silicon [11] and photoemission
spectra of atoms that include Auger recombination [22]. In all cases the authors used the
modified Fano function (7) in the form:

F̄(ε, q) = �2

�
+

�1

�
F(ε, q), � = �1 + �2. (8)

The effects described by (7) and (8) are connected with the interaction of one discrete state |ϕ〉
with two continua |ψE ′ 〉 and |χE ′ 〉. Further detail of the Fano interaction and the derivation
of (8) is given in the appendix. In our case we propose that |ϕ〉 represents the optical phonon,
|ψE ′ 〉 the valence continuum states and |χE ′ 〉 states in a virtual phonon continuum VC that
interacts with the optical phonon as shown in figure 3. The main idea is to replace a quasi-
continuous phonon band with a single optical phonon plus the virtual phononic continuum VC
(figure 3), and then to apply the Fano model with two continua represented by equation (8)
and explained in the appendix. It is worth emphasizing that in this case there is no transition
from the initial state to the VC continuum (see relation (A.16)) but only to the discrete phonon
state (dashed arrow in figure 3). As a result of the fitting procedure based on equation (8) we
obtained the parameters presented in figure 5. It is interesting that parameters depending on
electron–phonon interaction VE show a nonlinear dependence on boron content. We defined
�1 = 2πV 2

E that strictly holds for a true continuum with an infinite number of states as is
implied by the δ function for the matrix element 〈ψE ′′ |H |ψE ′ 〉 = E ′δ(E ′ − E ′′). In practice, a
quasi-continuum with a finite number of states per unit volume ρ(E) gives �1 = 2πV 2

Eρ(E).
Taking ρ(EF ) for ρ(E) with the additional assumption of parabolic upper and lower (lh and
hh) valence bands, one obtains [12]:

ρ(E) ∼= ρ(EF ) = constant
Nh − Nl

EF
(9)

where Nh and Nl represent the number of carriers for heavy and light holes, respectively. Since

Nh

Nl
=

(
mh

ml

)3/2

and NB = Nh + Nl at T = 300 K (10)

with the approximation of the Fermi–Dirac function F1/2(ξ) [23] for the moderate degeneracy:

F1/2(ξ) =
√

π

2

1

0.25 + e−ξ
, −1 < ξ < 5, ξ = EV − EF

kT
(11)

one gets:

p = 2√
π

NV F1/2(ξ) ∼= NB (12)

and the Fermi level as function of the boron concentration NB . Therefore, �1 is given as:

�1 = constant
NB

EF (NB )
. (13)

In figure 5(a) the full line corresponds to the relation (13) and the dashed one to the complete
degeneracy

(
F1/2 = 2

3ξ3/2
)
. Both models give a fairly good fit based on the electron–phonon

interaction and relation (9) but for the highest boron concentration. A similar discrepancy has
already been observed in Raman spectra of B-doped Si [12] at higher boron concentrations
where the approximation (9) is no longer valid. In addition, in our case the hole states
interacting with the phonons are below the Fermi level (see figure 3). On the other hand,
�2 and 〈�|T |i〉/〈ψE |T |i〉 (figures 5(b) and (d)), which represent an effective phonon–phonon
interaction and do not depend on �1, have a linear dependence on NB . This can be explained
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Figure 5. Parameters obtained using the fit according the two-continua Fano model. Parameters q
and �1 depend explicitly on the electron–phonon interaction.

as the phonon-defect impurity scattering with the collision frequency τ−1
s (d) which is directly

proportional to the defect concentration at room temperature [24, 25]. It is also worth
emphasizing that the ratio �2/�1 � 15–20 indicating that the main scattering mechanism
is due to the phonon-defect interaction within the quasi-continuous phonon band. In [6] the
authors also took into account the phonon band and fit of the absorption line at 519 cm−1.
They treated phonons individually and allowed all of them to interact with the hole continuum.
As a result they convolved the Fano function (3) with the phonon distribution function. In
contrast we applied the two-continua Fano model that effectively allows the interaction of the
�q = 0 phonon at 519 cm−1 with the hole continuum and the rest of the phonons separately. In
all cases we obtained very good agreement between the experiment and the model.

4. Summary

In this paper we present room temperature infrared absorption spectra of boron-doped Si in
the doping range 5 × 1018–2 × 1019 cm−3. The Fano line at 519 cm−1 is analysed and fitted
according to the Fano model that involves interaction of a discrete state with two different
continua. We found that it is necessary to take into account the phonon quasi-continuum band
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around the �q = 0 optical phonon at 519 cm−1 to describe the process through an effective
phonon–phonon interaction.
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Appendix

Here we closely follow the analysis of Fano [7] considering the interference between a single
discrete state and two continua of states. Most of the formalism can be found in Fano’s original
paper although formula (8) was not derived explicitly. Equation (8) can also be obtained by the
Green function method [11, 21]. For the case of the configurational interaction of a discrete
state |ϕ〉 with states of two different continua |ψE ′ 〉 and |χE ′ 〉, the eigenvectors are given by:

|�nE〉 = a|ϕ〉 +
∫

dE ′ [bnE ′ |ψE ′ 〉 + cnE ′ |χE ′ 〉], n = 1, 2 (A.1)

where n indicates that E is two-fold degenerate eigenvalue. In Fano’s notation the matrix
elements of a Hamiltonian H are given by:

〈ϕ|H |ϕ〉 = Eϕ, 〈ψE ′ |H |ϕ〉 = VE ′, 〈χE ′ |H |ϕ〉 = WE ′ (A.2)

〈ψE ′ |H |ψE ′ 〉 = 〈χE ′ |H |χE ′〉 = E ′δ(E ′′ − E ′′), 〈χE ′′ |H |ψE ′ 〉 = 0. (A.3)

It is understood that the discrete energy level Eϕ lies within the continuous range of values E ′
and E ′′. The coefficients a, bnE and cnE are determined from the system of equations:

Eϕa +
∫

dE ′ [V ∗
E ′bE ′ + W ∗

E ′cE ′] = Ea (A.4)

VE ′a + E ′bE ′ = EbE ′ (A.5)

WE ′ a + E ′cE ′ = EcE ′ . (A.6)

After some rearrangement we get two orthogonal solutions:

a1 = sin �̄

π(|VE |2 + |WE |2)1/2
(A.7)

b1E ′ = VE ′

(|VE |2 + |WE |2)1/2

[
1

π

sin �̄

E − E ′ − cos �̄δ(E − E ′)
]

(A.8)

c1E ′ = WE ′

(|VE |2 + |WE |2)1/2

[
1

π

sin �̄

E − E ′ − cos �̄δ(E − E ′)
]

(A.9)

where

�̄ = − arctan
π(|VE |2 + |WE |2)
E − Eϕ − Z(E)

and Z(E) = P
∫

dE ′ |VE ′ |2 + |WE ′ |2
E − E ′ (A.10)

and

a2 = 0 (A.11)

b2E ′ = W ∗
E ′

(|VE |2 + |WE |2)1/2
δ(E − E ′) (A.12)

c2E ′ = − V ∗
E ′

(|VE |2 + |WE |2)1/2
δ(E − E ′). (A.13)
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The probability Ptot of transition from an initial state |i〉 to all states with energy E is:

Ptot = |〈�1E |T |i〉|2 + |〈�2E |T |i〉|2. (A.14)

We are interested in the ratio Ptot/Pu , where Pu is the probability of a transition to the
unperturbed continuum |ψE 〉:

Ptot

Pu
= |〈�1E |T |i〉|2

|〈ψE |T |i〉|2 +
|〈�2E |T |i〉|2
|〈ψE |T |i〉|2 . (A.15)

Taking into account that there is no transition from an initial state |i〉 to |χE ′ 〉 i.e.:

〈χE ′ |T |i〉 = 0 (this makes a distinction between (7) and (8)) (A.16)

with (A.7)–(A.13), it is not difficult to show that:
|〈�1E |T |i〉|2
|〈ψE |T |i〉|2 = |VE |2

|VE |2 + |WE |2 (q sin �̄ − cos �̄)2 = |VE |2
|VE |2 + |WE |2

(q + ε̄)2

1 + ε̄2
(A.17)

|〈�2E |T |i〉|2
|〈ψE |T |i〉|2 = |WE |2

|VE |2 + |WE |2 (A.18)

where q is the same as in (4) and ε̄ is given by:

ε̄ = − cot �̄ = E − Eϕ − Z(E)

π(|VE |2 + |WE |2) = E − Eϕ − Z(E)

�/2
. (A.19)

Therefore, finally:
Ptot

Pu
= �2

�
+

�1

�

(q + ε̄)2

1 + ε̄2
(A.20)

where

�1 = 2π |VE |2, �2 = 2π |WE |2 and � = �1 + �2. (A.21)
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